Search
Subscribe

Bookmark and Share

About this Blog

As enterprise supply chains and consumer demand chains have beome globalized, they continue to inefficiently share information “one-up/one-down”. Profound "bullwhip effects" in the chains cause managers to scramble with inventory shortages and consumers attempting to understand product recalls, especially food safety recalls. Add to this the increasing usage of personal mobile devices by managers and consumers seeking real-time information about products, materials and ingredient sources. The popularity of mobile devices with consumers is inexorably tugging at enterprise IT departments to shifting to apps and services. But both consumer and enterprise data is a proprietary asset that must be selectively shared to be efficiently shared.

About Steve Holcombe

Unless otherwise noted, all content on this company blog site is authored by Steve Holcombe as President & CEO of Pardalis, Inc. More profile information: View Steve Holcombe's profile on LinkedIn

Follow @WholeChainCom™ at each of its online locations:

Entries in Semantic Trust (22)

Monday
May122008

Data Portability, Traceability and Data Ownership - Part IV

[return to Part III]

Connecting Portability to Traceability

Let’s begin this final part with a nicely presented video interview of Tim Berners-Lee, the widely acclaimed inventor of the World Wide Web, by Technology Review.

Video: Tim Berners-Lee on the Semantic Web
Technology Review (March, 2007)
Clicking on this link opens the video in a separate window for an 8 min 24 sec video.
Close that window when the video is complete and you'll be returned here.

 
Berners-Lee has a degree in physics from The Queen’s College, Oxford. He well expresses in the video the insight of an academic technologist preaching the benefits of the emerging Semantic Web as, essentially, one big, connected database.

For instance, Berners-Lee discusses life sciences not once but twice during this interview in the context of making more and better semantically connected information available to doctors, emergency responders and other healthcare workers. He sees this, and rightly so, as being particularly important to fight both (a) epidemics and pandemics, and (b) more persistent diseases like cancer and Alzheimer’s. Presumably that means access to personal health records. However, there is no mention in this interview about concerns over the ownership of information.

Here’s a more recent interview excerpt in March, 2008, initiated by interviewer Paul Miller of ZDNet, in which Berners-Lee does acknowledge data ownership fear factors.

Miller (03:21): “You talked a little bit about people's concerns … with loss of control or loss of credibility, or loss of visibility. Are those concerns justified or is it simply an outmoded way of looking at how you appear on the Web?”

Berners-Lee: “I think that both are true. In a way it is reasonable to worry in an organization … You own that data, you are worried that if it is exposed, people will start criticizing [you] ….

So, there are some organizations where if you do just sort of naively expose data, society doesn't work very well and you have to be careful to watch your backside. But, on the other hand, if that is the case, there is a problem. [T]he Semantic Web is about integration, it is like getting power when you use the data, it is giving people in the company the ability to do queries across the huge amounts of data the company has.

And if a company doesn't do that, then, it will be seriously disadvantaged competitively. If a company has got this feeling where people don't want other people in the company to know what is going on, then, it has already got a problem ….

Well actually, it would expose... all these inconsistencies. Well, in a way, you (sic) got the inconsistencies already, if it exposes them then actually it helps you. So, I think, it is important for the leadership in the company … to give kudos to the people who provided the data upon which a decision was made, even though they weren't the people who made the decision.” (emphasis added)

Elsewhere in this ZDNet interview, Berners-Lee announces that the core pieces for development of the Semantic Web are now in place (i.e., SPARQL, RDF, URI, XML, OWL, and GRDDL). But, again, what I find lacking is that these core pieces do not by themselves provide a mechanism for addressing data ownership issues.

I wish I could introduce Berners-Lee to Marshall Van Alstyne.

Actually, they may already know each other. Like Berners-Lee, Van Alstyne is a professor at the Massachusetts Institute of Technology. Van Alstyne is an information economist whose work in the area of data ownership I have greatly admired for some time (though I have yet to have had the pleasure of making his acquaintance).

There are other noteworthy recent papers by Van Alstyne but, since I first came across it several years ago, I have continued to be enamored with the prescience of a 1994 publication he co-authored entitled, Why Not One Big Database? Ownership Principles for Database Design. Here’s my favorite quote from that paper.

The fundamental point of this research is that ownership matters. Any group that provides data to other parts of an organization requires compensation for being the source of that data. When it is impossible to provide an explicit contract that rewards those who create and maintain data, "ownership" will be the best way to provide incentives. Otherwise, and despite the best available technology, an organization has not chosen its best incentives and the subtle intangible costs of low effort will appear as distorted, missing, or unusable data.” (emphasis added)

Whether they know each other or not, the reason I would want to see them introduced is that I don’t hear Van Alstyne’s socio-economic themes in the voice of Berners-Lee. In fact I have checked out the online biographies provided by the World Wide Web Consortium (W3C) of the very fine team that Berners-Lee, as the head of W3C, has brought together. I find no references to academic degrees or experiential backgrounds in either sociology or economics. The W3C team is heavily laden with technologists.

And, why not? After all, the mission of the W3C is one of setting standards for the technological marvel that is the World Wide Web. One must set boundaries and bring focus to any enterprise or endeavor, and Berners-Lee has reasonably done so by directing the W3C team to connect the data that society is either already providing, albeit free of data ownership concerns (i.e., the information already available in massively populated government databases, academic databases, or other publicly accessible sources).

It’s just that I wish there was some cross-pollination going on between the W3C and the likes of Van Alstyne that was resulting, for instance, in something like author-controlled XML (A-XML) as exampled in Parts II and III, above (and, again, below).

That the W3C is not focusing on data ownership is an opportunity for the likes of Dataportability.org. Similarly, as mentioned in Part III, above, in the world of supply chains a likely candidate for a central ‘any product data bank’ would be EPCglobal, the non-profit supply chain consortium. But EPCglobal is a long way from focusing on the kind of data ownership proposed in this writing, or perhaps even envisioning as an organization that they might want to do so.

Like EPCglobal within the ecology of supply chains, Dataportability.org has seated at its table some very powerful members of the social networking ecology (i.e., Google, Plaxo, Facebook, LinkedIn, Twitter, Flickr, SixApart and Microsoft). There is a critical mass in those members that provides an opportunity for an organization like Dataportability.org to become a neutral, central data bank for portable information among its members for the benefit of social networking subscribers.

For instance, for e-mail addresses desired by a Facebook subscriber to be portable to other social networking websites, Facebook would add tools to the subscriber's interface for seamless registration of the e-mail addresses with a central, portability database branded with Facebook's trademark (but in fact separately administered by Dataportability.org).  The subscriber would merely enter the chosen e-mail addresses into his or her interface, click on the 'register' button, and automatically author the following draft XML object ...

<?xml version="1.0" encoding="UTF-8" ?>
<PortabilityDictionary_DraftElements>
<emailaddr>noname01@pardalis.com</emailaddr>
<emailaddr>noname02@pardalis.com</emailaddr>
<emailaddr>noname03@pardalis.com</emailaddr>
</PortabilityDictionary_DraftElements>

... which would come to be registered in the central portability 'bank' (again, administered by Dataportability.org) as the following XML object.

<?xml version="1.0" encoding="UTF-8" ?>
<PortabilityDictionary_RegisteredElements>

<emailaddr UniquePointer =
" http://www.centralportabilitybank.org/email_IDs/21263 "/>

<emailaddr UniquePointer =
" http://www.centralportabilitybank.org/email_IDs/21264 "/>

<emailaddr UniquePointer =
" http://www.centralportabilitybank.org/email_IDs/21265 "/>

</PortabilityDictionary_RegisteredElements>

Again, as illustrated in Part III, above, this would set the stage for a viable model for Dataportability.org, as a non-profit consortium managed by the likes of Facebook, Flickr, etc., to provide more than just portability services. Now, with a centralized registry service for A-XML objects (i.e., author-controlled, informational objects) the portability service could easily be stretched into a non-collaborative data authoring and sharing service.

IP Comment: Compare and contrast the collaborative data authoring and sharing systems illustrated by Xerox's US Patent 5,220,657, Updating local copy of shared data in a collaborative system Φ and eiSolutions' US Patent 6,240,414, Method of resolving data conflicts in a shared data environment.

And, again, the 'data ownership' service would presumably be branded by each of the distributed ‘bank members’ (like Facebook, Flikr, etc.) as their own service.

What might this data ownership service entail? To instill confidence in subscribers that they ‘own’ their portable data, what could be provided to members by Facebook, Flickr, etc. as part of the data ownership service made possible by the central Dataportability.org?

For instance: 

  • Each time an administrative action is taken by Dataportability.org affecting the registered data object - or a granular data element within a registered object - the subscriber could choose to be automatically notified with a fine-grained report.
  • Each time the registered data object is shared - or data elements within the object are granularly shared - according to the permissions established by the subscriber, he or she could choose be immediately, electronically notified with a fine-grained report.
  • Online, on-demand granular information traceability reports (i.e., fine-grained reports mapping out who accesses or uses a subscribers shared information)
  • Catastrophe data back-up services
  • etc. 

Thus could Dataportability.org light a data ownership pathway for both the W3C and EPCglobal. 

Concluding Remarks 

The fundamental point of this multi-entry blog is that data ownership matters. With it, the Semantic Web stands the best chance for reaching its full potential for the porting of records between and among social networking sites, and for the tracking and discovering of information along both information and product supply chains.

And holding that positive thought in mind, it’s time to end this writing with a little portability rock n’ roll. It's courtesy of Danny Ayers. Enjoy!

Wednesday
Apr302008

Pain in the SaaS

Here is an excerpt from an article published by the The Economist on April 24th.

"It was bound to happen. One after another, pieces of software have been moving online in a trend towards “software as a service” (SaaS). You can now manage your e-mail, write documents and edit spreadsheets using online services that run inside a web browser .... But now the trend has reached the darker corners of the software universe. Computer-security firms say criminals have adopted the new model too, and are offering “crimeware as a service” (CaaS).

.... 

The new offerings ... take commercialisation to the next level by allowing criminals to use and pay for such nefarious services via a web browser. Just as companies that adopt SaaS no longer need armies of support technicians ... criminals using CaaS no longer need to be hackers. One web-based service he found even allows customers to specify a target group, such as British lawyers or American doctors. Once enough of their machines have been infected, documents and other data are siphoned out of them."

 SaaS provides huge, potential benefits in terms of costs, business efficiencies and customer convenience. It will be the preferred tool of the emerging Semantic Web. The challenge is that it comes with fear factors, too. In Portability, Traceability and Data Ownership I have addressed some of those fear factors.

"The value proposition of data ownership is that it provides the most acceptable technological and socio-political pathway for adoption by ordinary people of the emerging Semantic Web."

For the complete Economist article, go to Pain in the aaS (sic).

Friday
Apr182008

Dataportability, Traceability and Data Ownership - Part III

[Return to Part II]

The Value Proposition of Data Ownership

Thanks to Henry Story for stopping by to comment on the XML object examples offered in Part II.

"Yes, unique identifiers are very helpful. But numbers rarely uniquely identify anything. Replace your numbers above with URIs (Universal Resource Identifiers) and you have not only a proven system of unique IDs, you also have (especially with http URIs) a well understood way of dereferencing the information. Then you no longer need a specialised name server. This is what the web part of the semantic web is about [which I wrote about in the Sun Bablefish blog entitled hyperdata posted September 20, 2007]. You then move out of supply chains, into supply networks, which I wrote up in another blog [entitled Supply Networks posted April 19, 2007]." (emphasis added)

The end-game goal of the emerging Semantic Web is to interconnect data so that it becomes a ‘hyperdata’ machine. Nonetheless, as Story has previously propounded, there is more to it than technology. There is also the need for policies or other non-technological means that address “who should see what data, who should be able to copy that data, and what they should be able to do with it.”

For some people the Semantic Web will be a technological wonder to behold. Others will be scared stiff by it. Many will feel both awe and trepidation. But not to be forgotten is that people matter more than the Web, itself. A Semantic Web that people view as outside of their control will be a machine that can only become a shadow of its full potential because people, businesses and, yes, even governments will not fully participate.

Previously, in Banking on Granular Information Ownership I offered this.

"People are comfortable and familiar with monetary banks. That’s a good thing because without people willingly depositing their money into banks, there would be no banking system as we know it. Banks need access to people’s money into order to make profits. Without a healthy monetary banking system our economies would be comparatively dysfunctional, and our personal lives would be critically deficient in opportunities."

The same thing can be said about the emerging Semantic Web. People will need to be made comfortable and familiar with the Semantic Web. Without people willingly depositing their information to this new Web, it will fall far short of its inherent capacity for growth.

Moreover, the Semantic Web will need access to people’s information in order make profits, no matter what the business model is. The opportunities for the Semantic Web to enrich our economies and our personal lives will be diminished without ‘buy in’ by the people whom it is envisioned to serve. The value proposition of data ownership is that it provides the most acceptable technological and socio-political pathway for adoption by ordinary people of the emerging Semantic Web.

It is because people matter more than the Web that ‘specialized name servers’ will play a large role. Using the hypothetical domain name ‘www.toydatabank.org’ I have added the following A-XML example to the continuum of examples begun in Part II. I have wrapped some of the following lines of code, and inserted spacing, for easier reading.

<?xml version="1.0" encoding="UTF-8" ?>
<Pedigree>

<PedigreeID UniquePointer =
" http://www.toydatabank.org/toymfg/Object_IDs/99087 "/>

<ManufacturerID UniquePointer =
" http://www.toydatabank.org/toymfg/mfg_IDs/00372 "/>

<ProductSerialNumber UniquePointer =
" http://www.toydatabank.org/toymfg/element_IDs/43229 "/>

<ProductDescription UniquePointer =
" http://www.toydatabank.org/toymfg/element_IDs/23444 "/>

<ProductInfoToSupplyChain UniquePointer =
" http://www.toydatabank.org/toymfg/element_IDs/66221 "/>

<ProductInfoToGovtRegulator UniquePointer =
" http://www.toydatabank.org/toymfg/element_IDs/66333 "/>

<Permissions UniquePointer =
" http://www.toydatabank.org/toymfg/Permissions_IDs/37911 "/>

<!-- Manufacturer information sharing permissions -->
<OtherData>Document Type Definitions</OtherData>
</Pedigree>

Combine a specialized name server with a centralized dictionary of uniquely identified (and standardized) data elements, a centralized registry of A-XML informational objects, an author-controlled permissions database, a distributed A-XML editor/reader and you have the essential components of what I call a supply chain ‘data bank’.

What does a data bank do? It depends on the supply chain, the social network or, as Henry Story has very neatly coined, the ‘supply network’. The white paper, Banking on Granular Information Ownership, covers much of this territory in a less technological manner with examples applicable to personal health records, food safety, product tracking, people tracking, and transactional tracking.

However, I want to add that - conceptually - the connatural, non-collaborative disposition of technological data ownership is a perfect compliment to the approach that Wikipedia has taken in fostering the collaborative authoring of encyclopedic entries. I say ‘conceptually’ because Wikipedia’s entries are collaborative though non-structured. But what if Wikipedia’s collaborative processes and methods for approving unstructured information were applied to structured information?

That is, what if the information account holders of a toy data bank were empowered to collaboratively add to their data bank’s dictionary of structured data elements so that all account holders may then draw upon them non-collaboratively for the A-XML objects each account holder authors and controls?

Consider that a supply chain member of the toy data bank wishes to add to our toy product pedigree example in Part II the language in red.

Product Pedigree Document
Manufacturer ID = Safe Toy Company
Product Serial Number = STOY991
Product Description = Painted Toy
Product Info To Supply Chain = 0% lead in paint
Product Info To Govt Regulator = Less than 600ppm of lead in paint by weight
Product Child Labor = No child labor used

The supply chain participant, using the toy data bank’s XML editor, authors a draft of the following XML data object  …

<?xml version="1.0" encoding="UTF-8" ?>
<ToyDictionary_DraftElements>
<ToyProductChildLabor>No child labor used</ToyProductChildLabor>
</ToyDictionary_DraftElements>

… that - if adopted by the toy data bank – will be deposited into a standardized toy data bank ‘dictionary’ of XML structured data elements. These would then be available for A-XML authoring by any toy supply chain participant who is a member of the toy data bank. Again, I have wrapped some of the following lines of code, etc., for easier reading.

<?xml version="1.0" encoding="UTF-8" ?>
<ToyDictionary_RegisteredElements>

<ToyProductChildLabor UniquePointer =
" http://www.toydatabank.org/toymfg/element_IDs/12637 "/>

</ToyDictionary_RegisteredElements>

And taking the ‘data bank’ analogy one step further. Let’s say that the adoption of the ‘Product Child Labor’ data element by the toy data bank involves the alternative approval of a central ‘product data bank’ overseeing a larger standardized ‘dictionary’ applicable to products of all kinds (e.g., toys, pharmaceuticals, livestock, food, etc.).

<?xml version="1.0" encoding="UTF-8" ?>
<AnyProductDictionary_RegisteredElements>

<AnyProductChildLabor UniquePointer =
" http://www.anyproductdatabank.org/prodmfg/element_IDs/73621 "/>

</AnyProductDictionary_RegisteredElements>

In the world of supply chains, a likely candidate for such a central ‘any product data bank’ would be EPCglobal, the private, standards setting consortium governed by very large organizations like Cisco Systems, Wal-Mart, Hewlett-Packard, DHL, Dow Chemical Company, Lockheed Martin, Novartis Pharma AG, Johnson & Johnson, Sony Corporation and Proctor & Gamble. EPCglobal is architecting essential, core services for tracking physical products identified by unique electronic product codes (including RFID tags) across and within enterprise systems controlled by large organizations.

The crux of this multi-entry blog is that data ownership – that is, technological data ownership – paradoxically provides a non-technological ‘something more’ that will be a necessary ingredient to the emerging Semantic Web. It will do so by empowering supply chain participants with non-collaborative authoring of granular, structured informational objects that may remain within the visibility and control of the author even as they are shared within a complex supply chain.

And with that, I think I have pretty much all the pieces I need for a final Part IV.

[continued in Part IV]

Thursday
Apr102008

Portability, Traceability and Data Ownership - Part II

[return to Part I]

The Dilemma of Missing Information

Here is a four minute video interview of Chris Saad, Co-founder and CEO of Faraday Media. If you are pressed for time, just catch the first minute and a half. Chris is also Co-founder and Chairperson of Dataportability.org of which Faraday Media is a sponsor. In Part I of this multi-entry blog I began with the video clip called Data Portability – Video that is a promo for Dataportability.org.



Learning from the Future at the Next Web with Chris Saad from Maarten on Vimeo.

Right after the Facebook/Scoble incident, Dataportability.org gained momentum and membership from individuals associated with the likes of Google, Plaxo, Facebook, LinkedIn, Twitter, Flickr, SixApart and Microsoft. At Chris' suggestion I, too, have just recently joined their DataPortability Policy Action Group.

Henry Story, a staff engineer for Sun Microsystems, made the following interesting comments on the Sun Babelfish blog about Chris Saad’s Data Portability group and the Data Portability – Video.

“Will the Data Portability group [at Dataportability.org] get the best solution together? …. [O]ne wonders whether XML is not the solution to their problem. Won't XML make data portability possible, if everyone agrees on what they want to port? Of course getting that agreement on all the topics in the world is a never ending process....

But the question is also whether portability is the right issue. Well in some ways it is. Currently each web site has information locked up in html formats … [which makes] it difficult to export the data, which each service wants to hold onto as if it was theirs to own.

Another way of looking at this is that the Data Portability group cannot so much be about technology as policy. The general questions it has to address are question of who should see what data, who should be able to copy that data, and what they should be able to do with it. As a result the policy issue of Data Portability does require one to solve the technical problem of distributed identity: how can people maintain the minimum number of identities on the web? (ie not one per site) Another issue that follows right upon the first is that if one wants information to only be visible to a select group of people - the "who sees what" part of the question - then one also needs a distributed way to be able to specify group membership, be it friendship based or other. The [Data Portability – Video] … makes that point very clearly why having to recreate one's social network on every site is impractical.

Story’s comments are a good setup for what I want to address. And what I want to address is how to make a connection between data portability and what I call the ‘frayed ends and laterals’ of complex product supply chains.

Along the way I want to pay attention to those readers (i.e., the vast majority of the regular, non-techie folks in the world) who are hanging back wondering what an XML object is. Let’s weave in a little history with a simple example, shall we?

The World Wide Web Consortium (W3C) is the main international standards organization for the World Wide Web. W3C is headed by Sir Tim Berners-Lee, creator of the first web browser and the primary author of the original Uniform Resource Locator (URL), HyperText Transfer Protocol (HTTP) and HyperText Markup Language (HTML) specifications. These are the principal technologies that form the basis of the World Wide Web.

For example, consider this product pedigree written in natural language.

Product Pedigree Document
Manufacturer ID = Safe Toy Company
Product Serial Number = STOY991
Product Description = Painted Toy
Product Info To Supply Chain = 0% lead in paint
Product Info To Govt Regulator = Less than 600ppm of lead in paint by weight

A beneficial characteristic of the World Wide Web is that you can read language like the foregoing example in a natural way but ‘behind the scenes’ (i.e., behind the web browser interface) this natural language representation can be constructed in different ways for different purposes.

The same natural language representation written as an HTML information object using an HTML authoring software application (also called an HTML editor) would read behind the scenes as follows.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">
<body><p>
Product Pedigree Document<br>
Manufacturer ID = Safe Toy Company<br>
Product Serial Number = STOY991<br>
Product Description = Painted Toy<br>
Product Info To Supply Chain = 0% lead in paint<br>
ProductInfo To Govt Regulator = Less than 600ppm of lead in paint by weight
</p></body></html>

Because HTML objects are designed primarily for creating static websites, and not for dynamic information sharing, W3C has further developed standards for structured electronic sharing in the form of Extensible Markup Language (XML) objects for facilitating the emerging Semantic Web.

With gracious assistance from my good friend and collaborator, Dr. Marvin Stone, here’s an example of a granular XML information object created in an XML editor that would be naturally represented through a web browser as above.

<?xml version="1.0" encoding="UTF-8" ?>
<Pedigree>
<ManufacturerID>Safe Toy Company</ManufacturerID>
<ProductSerialNumber>STOY991</ProductSerialNumber>
<ProductDescription>Painted Toy</ProductDescription>
<ProductInfoToSupplyChain>0% lead in paint</ProductInfoToSupplyChain>
<ProductInfoToGovtRegulator>Less than 600ppm of lead in paint by weight</ProductInfoToGovtRegulator>
<OtherData>Document Type Definitions</OtherData>
</Pedigree>

This type of granular XML object works fine for short, vertically integrated supply chains covered by one or two enterprise systems where a small number of supply chain participants agree on what they want to port. But due to prevalent fear factors (and other policies) that prevent or otherwise affect information sharing along lengthy, complex information supply chains, there is a critical need for a more refined XML tool.

Here’s an example of a hypothetical, author-controlled XML object that would be created/authored/constructed using an extension to the foregoing XML editor that we could call an A-XML editor extension (i.e., author-controlled XML editor extension).

<?xml version="1.0" encoding="UTF-8" ?>
<Pedigree>
<PedigreeID UniquePointer =" 99087 "/>
<ManufacturerID UniquePointer =" 00372 "/>
<ProductSerialNumber UniquePointer =" 43229 "/>
<ProductDescription UniquePointer =" 23444 "/>
<ProductInfoToSupplyChain UniquePointer =" 66221 "/>
<ProductInfoToGovtRegulator UniquePointer =" 66333 "/>
<Permissions UniquePointer =" 37911 "/>
     <!-- Manufacturer information sharing permissions -->
<OtherData>Document Type Definitions</OtherData>
</Pedigree>

In the process of being authored by the toy manufacturer, this A-XML object would be constructed to point to a central repository of uniquely identified data containing the toy manufacturer's unique ID, the unique identifiers of the painted toy’s pedigree, and a unique identifier of the toy manufacturer's information sharing permissions.

Once distributed by the manufacturer/author to a lengthy supply chain, this A-XML object would provide greater control, visibility and traceability one-share, two-shares, three-shares, etc. away from the author. As other supply chain participants access the A-XML object (using a compatible XML editor) to confirm the toy’s pedigree, the toy manufacturer would be provided with supply chain visibility never before experienced.

For instance, the data element "0% lead in paint" uniquely identified as 66221 would be accessible by any supply chain participant registered with the central repository and using a compatible XML editor. The data element "Less than 600ppm of lead in paint by weight" uniquely identified as 66333 would only be accessible by permitted government regulators also registered with the central repository. (For those of you concerned with the ethics of representing one thing to consumers while reporting something else to the government, check out Are Food Labels Reliable?)

In my first journal entry to this blog I offered this:

“Unscrupulous supply chain participants will always try to hide in the ‘fog’ of their supply chains. The manufacturers of safe products want to differentiate themselves from the manufacturers of unsafe products. But, again, fear factors keep the good manufacturers from posting information online that may put them at a competitive disadvantage to downstream competitors.”

There’s a chicken and egg effect here, isn’t there? That is, which comes first, policy or technology?

Here’s one answer.

Don’t throw the baby out with the bath water. Don’t get rid of the supply chain enterprise and legacy systems that are already providing useful information sharing without the data ownership characteristics of a tool like A-XML. But in the context of an emerging Semantic Web that will lean heavily upon software-as-a-service, consider the missing and incomplete information that is not being shared from the frayed ends and laterals of complex product supply chains.

And, ask yourself, could there be both a technological and socio-political connection made between data portability and supply chain traceability?

[continued in Part III]

Friday
Apr042008

Portability, Traceability and Data Ownership - Part I


DataPortability - Connect, Control, Share, Remix from Smashcut Media on Vimeo.

 

Introduction

In early January, 2008, Ed Felten, a Professor of Computer Science and Public Affairs at Princeton, posted Scoble/Facebook Incident: It’s Not About Data Ownership on Freedom to Tinker.

“Last week Facebook canceled, and then reinstated, Robert Scoble’s account because he was using an automated script to export information about his Facebook friends to another service. The incident triggered a vigorous debate about who was in the right. Should Scoble be allowed to export this data from Facebook in the way he did? Should Facebook be allowed to control how the data is presented and used? What about the interests of Scoble’s friends?

An interesting [idea] kept popping up in this debate: the idea that somebody owns the data.

Where did we get this idea that facts about the world must be owned by somebody? Stop and consider that question for a minute, and you’ll see that ownership is a lousy way to think about this issue.”

I agree with Professor Felten that legal ownership is not the best way to think about data ownership.

Fred Von Lehmann, a senior staff attorney for the Electronic Frontier Foundation, responded to Felten’s posting by helpfully distinguishing legal ownership from technological ownership.

“Speaking as [a patent] attorney, Felten got this exactly right — there is no “ownership” of the facts in question.

But even if there were, it wouldn’t answer these questions. Consider sites like Flickr. Unlike the facts in Facebook, the photos on Flickr are plainly copyrighted works. But that doesn’t tell you anything about whether the copyright owner is entitled to access Flickr’s servers to make copies of the photos.

Your ownership in an intangible (copyright or patent) does not come with any right to access particular copies of it that reside elsewhere. Flickr can delete all of your photos, and if you failed to make back-ups, nothing in copyright law would provide you recourse.”

Another commenter, only identifying himself or herself as Spudz, made a sage comment about the natural fear factors that keep information from being shared.

“One thing worth adding here is that Facebook has no need to police potential abuse of shared information. There’s a natural mechanism to deal with that: people won’t share information (on Facebook or elsewhere) with people they don’t trust, and people that abuse trust stop being trusted. These are ancient social mechanisms that work adequately on any site where a user gets to choose to expose information only to specific other users. Mechanisms tens of thousands of years old, if not older.”

I’m guessing that Spudz is either a political scientist, sociologist or anthropologist.

Anyway, what Scoble did was to engineer an automatic means for the porting of the names and e-mail addresses of his Facebook friends out of Facebook's database and into to the database of a Facebook competitor. On the one hand, this isn't a new news item. But it remains an everyday, omnipresent issue in that Facebook, Flickr and all other dominant social networking sites will need to solve this dilemma. They will need to solve it to survive the ever increasing expectations of their users and subscribers for information portability that are bound to come with an emerging Semantic Web.

And why not? Arguably, one of the essential purposes of the emerging Semantic Web is to empower people and businesses with the choice of more and more technological control over their information that they may aptly call ‘data ownership’ for short. Their expectations for an emerging Semantic Web have no doubt been raised from the online banking of their money, and the online purchase of products and services.

To echo what Spudz said above, what we at Pardalis have noticed is that as supply chains lengthen and fragment, the ownership and control of product information deemed confidential by each supply chain participant becomes rapidly affected by fear factors. And what we have further noticed is that the 'frayed ends and laterals' of complex product supply chains appear to look and behave a lot like social networks.

So here is the essential question of this multi-part journal entry:

Where social networks and supply chains overlap, what opportunities are there to find technological data ownership solutions that address the fear factors working against both portability (between social network websites) and information traceability (along complex product supply chains)?

[continued in Part II]